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We show that the dominant eigenvectors of real protein structural contact matrices are highly correlated with
their amino acid sequences. These results suggests that an ab initio sequence-independent profile exists for
every protein structure and that this profile is highly effective in differentiating the ordering of amino acids in
natural protein sequences from random sequences. This profile provides a structural code and is a key for
understanding the unique behavior of protein structures. Using a lattice model, we show that there are special
codable structures highly separated from random structures in the dominant eigenvector space of their struc-
tural contact matrices. As an example, we show our results provide a good explanation to the “designable
principle” of protein structures.
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Deciphering the “structural code” that dictates how an
amino acid sequence folds into a unique three-dimensional
�3D� protein structure is a key problem in structural biology
�1–3�. Nature is extremely selective in choosing the polypep-
tide sequences and native structures of proteins �4�. Among
�20300 theoretically possible polypeptide sequences, only
about 1012 occur in nature �5�. These natural proteins fall into
about 2000 distinct structural families �6,7�. Many proteins
with similar structures have very little sequence similarity
�8�. This suggests that only part of a protein’s sequence in-
formation is important in determining its native structure.
From the viewpoint of information coding, a random 3D
polypeptide structure contains many degrees of freedom
which in general, cannot be encoded with just N amino acids
with 20 restricted discrete choices. However, the fact that
protein sequences encode unique structures indicates that
protein structures must satisfy the criterion of being “cod-
able.” To investigate which components of a protein se-
quence are responsible for determining the protein’s native
configuration, it is advantageous to examine information
which is carried inherently in the native structure without
explicit consideration of the amino acid sequence informa-
tion. This sequence-independent information can be viewed
as a global consensus of the “structural coding” of those
sequences that can adopt a given structure despite their se-
quence diversity. In this paper we show that such a structural
code can be obtained by studying the correlation between
real protein sequences and structures from a contact energy
perspective.

In a contact energy scheme �9�, the three-dimensional
structure of a protein is represented by a n�n contact matrix
C where n is the number of residues. The element Ci,j of C is
assigned a value of 1 if the ith and jth residue are in contact,
otherwise, Ci,j is 0. Two residues are considered to be in
contact when they are not neighboring in sequence and the
geometrical distance between them is within a certain cutoff
distance. If two residues are in contact, a contact energy is
assigned according to the residue types. The total interaction

energy for a given protein structure is the summation of all
pairwise contact energies of the conformation. There are
various ways to weight contact energies for different residue
pairs of the 20 naturally occurring amino acids. The simplest
is the HP model �10–12� in which the amino acids are clas-
sified as hydrophobic �H� and polar �P�, and pairwise contact
energy is assigned according to the three different types of
contact: H-H, H-P, and P-P. A more advanced scheme, the
statistical potential obtained by Miyazawa and Jernigan
�13–16� is a 20�20 matrix �MJ matrix� obtained from the
contact statistics of different types of residues in the protein
structure database. Li, Tang and Wingreen �LTW� �17�
showed that the MJ matrix can be approximated as Ei,j
=c2�qi+a��qj +a�+E0 where qi is a measure of the hydropho-
bicity of residue type i �17�. c2, E0, and a are constants. By
replacing the value qi by qi�=qi+a, it can be rewritten as
Ei,j =c2qi�qj�+E0. In this paper, we will refer to the modified
q� as the q value of the ith residue in the rest of this paper. In
this paper, we measure the sequence-structure fitness by the
difference between the energy of native sequence on a given
structure and the average energy of randomly shuffled se-
quences on the same protein structure. Because the native
sequence and shuffled sequences are calculated using the
same 3D structure, the constant shift �E0� in energy will be
canceled exactly and will be neglected in the rest of this
paper. The constants c2 can be viewed as a unit of energy and
will be set to be 1.

Under the HP and LTW parametrized MJ interaction
schemes, the sequence of a protein can be represented by a
sequence vector S whose elements are either 1 or 0 for the
HP model, or the corresponding q values of residues using
the LTW representation. For a protein with contact matrix C,
the conformational energy can be written as

E = �S�C�S� . �1�

Note that the energy form of Eq. �1� is similar to a stan-
dard quantum system �18� with C as its Hamiltonian. The
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difference is in the vector space. For a quantum system, el-
ements in vector S can be any complex number, while for a
protein system, the elements in vector S are limited to the 20
q values �LTW� or �1,0� �HP model�. C can be decomposed
into its eigenstates �Vi� corresponding to eigenvalues �i, i.e.,
C=	i�i�Vi��Vi� where �i is the solutions of the equation
C�Vi�=�i�Vi�. Thus the total conformational contact energy
can be expressed as the summation of the individual contri-
bution of the eigenvectors of C :E=	i�iWi, where Wi

= ��S �Vi��2 is the overlap between sequence vector �S� and
eigenvector �Vi�.

For a quantum system, the ground state is �V0�, with the
Wi spectrum: W0=1, Wi=0 if i�0. For a protein, however,
because the vector space �S� is restricted by the 20 naturally
occurring amino acids, �V0� is generally unreachable, and Wi

might be different from that of the quantum system even
though the contact energy is indeed optimized in the protein
folding process.

An example of the overlap Wi between a protein sequence
and the eigenvectors of its native structure contact matrix is
shown in Fig. 1 which shows the Wi spectrum of the protein
structure 1a0b �Phosphotransfer Domain of E coli, Protein
Data Bank �19� �PDB� id 1a0bi� using HP sequence and
LTW q values. It is interesting to note that the dominant
contribution to the contact energy comes from the first eigen-
vector �

�0W0

E =0.688 using LTW q values�. The strong corre-
lation between a protein’s sequence vector and the dominant
eigenvector of its native contact matrix implies that a linear
structural code exists for a given protein’s native structure.
We hypothesize that this structural code differentiates a cor-
rectly ordered protein sequence from a “random” sequence.
To test this idea, we compared the Wi spectrum of the native
sequence with the spectrum that was obtained from those
randomly shuffled of the same sequence. We calculated the
“Z score” �20� of W�i�,

Zi =
Wi − Wi

shuffle

�
, �2�

where Wi
shuffle is the average Wi for shuffled sequences, and

� is the root-mean-square deviation of the shuffled se-
quences. To get good statistics, we selected 13 340 represen-
tative single-domain structures �21� from the ASTRAL data-
base �8� and calculated Zi for each protein.

The average Z scores over all the structures are plotted in
Fig. 2 for both the HP model and the LTW-MJ scheme to
evaluate the sequence-eigenvector correlation for each eigen-
vector. According to Fig. 2, only the dominant eigenvector is
statistically significant �Z score greater than 2.0� in distin-
guishing the correct ordering of amino acids that will fold to
a given structure. This means that the majority of the eigen-
vectors are “blind” to the sequence order. Thus, in the pro-
cess of assessing the sequence-structure fitness for a given
amino acid sequence and a given protein structure one can
consider the dominant eigenvector only instead of the entire
contact matrix.

Because each eigenvector can be viewed as a “mode” and
together these eigenvectors form a complete set, the correla-
tion between the protein sequence and the dominant eigen-
vector of the contact matrix discussed above implies a way
that a protein sequence encode its structural information. In
natural proteins, the structural information is encoded by in-
corporating the dominant mode of the protein’s native struc-
ture into the ordering of its hydrophobicity profile. This in-
formation will be recognized in a folding process that
optimize hydrophobic interaction energy. The remaining
modes �eigenvectors� with small eigenvalues are much less
important than the dominant “coding mode” in determining
the contact matrix. These other degrees of freedom may be
used to incorporate other important aspects of protein func-
tion �e.g., enzyme active sites�.

FIG. 1. �Color online� An example of the overlap �Wi

= ��S �V��2� between a protein sequence and eigenvectors of the pro-
tein’s native structure contact matrix �protein PDB id 1a0b�. Square
and circle are results using HP and LTW scheme, respectively.
Eigenvectors are ranked in decreasing order according to their ei-
genvalues. ��V0� is the vector with the largest eigenvalue.�

FIG. 2. �Color online� Average Z scores of different eigenvec-
tors for 13 340 representative proteins �21� from ASTRAL data-
base. 1000 shuffles are used to calculate Z-score Zi

k for each protein
k with eigenvector i. The average Z scores over the 13 340 proteins
�Zi

ave=	k=1,13 340Zi
k /Ntotal, where Ntotal is the total number of pro-

teins involved� were calculated. Results for the first 50 eigenvectors
are plotted here. Results using HP model and LTW scheme are
represented by circles and stars, respectively.
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The observed correlation between a protein’s sequence
and the dominant eigenvector of its contact matrix provides a
framework for mapping a 3D structure to a one-dimensional
�1D� sequence. This framework should be useful in several
applications. In previous work �21�, we have shown that an
effective structural threading method based on this correla-
tion can be constructed. This one-dimensional representation
of protein structure may also be useful in studies of the evo-
lution of protein structures �22�. In particular, this framework
can be used to understand the “designability principle” of
protein folding proposed by Li, Tang, and Wingreen �23�.
The designability of a given protein structure is the number
of sequences which adopt that structure as their lowest en-
ergy state �ground state�. The “designability principle,” pro-
posed by Li et al. based on a HP lattice model, states that
natural protein structures correspond to highly designable
structures because they have higher thermal stability than
other configurations. Recently, Li et al. �24,25� postulated
that, for a given 2D lattice structure, there is a corresponding
vector in sequence space, such that all neighboring se-
quences adopt that structure as the ground state. Therefore,
the density of structures in the neighborhood of this vector is
a measure of the designability of the protein. In their study,
this vector is the solvent exposure profile of the protein.

Here we propose that the dominant eigenvector of the
contact matrix provides a better 1D structural representation
of a protein. Eigenvector studies of protein contact matrix
support this assumption �26,27�. Because the sequence vec-
tor and the dominant eigenvector of the contact matrix have
the same dimension, a protein’s structure and sequence can
be represented by points in the same n- �where n is the length
of sequence� dimensional vector space. The distance between
the vectors of a sequence and a structure in this
n-dimensional space is related to their vector dot product.
Minimization of the free energy due to the hydrophobic in-
teractions causes a polypeptide sequence to fold to a struc-
ture in its neighborhood in the n-dimensional space. How-
ever, if other structures are also close to the sequence vector,
the presence of competing “decoy� structures having similar
energies to the ground state will lead to a rugged energy
landscape, and prevent the protein from adopting a unique
fold. To achieve a “funnel”-like energy landscape �28,29�,
the native structure of a protein must be far away from other
compact structures in the n-dimensional space. So the “des-
ignability” of a structure should be inversely related to the
density of structures around it.

The above conjecture can be tested on the case of lattice
proteins where all possible contact matrices can be enumer-
ated. We restrict ourselves to a 3�3�3 cubic lattice used by
Li et al. and many others �23�. In agreement with past studies
we found a total of 103346 possible different contact matri-
ces. We enumerate all possible HP sequences on these lattice
structures using the same interaction scheme as Li et al.
�H-H, −2.3; H-P, −1; P-P, 0� �23� to obtain the designability
of each lattice configuration. For each structure, the domi-
nant eigenvector of its contact matrix is also generated as its
structural coding vector to map the structure onto the 27-
dimension vector space. To measure the density of structures,
we calculate all pairwise overlaps for all lattice structural
coding vectors. The overlap becomes large when two vectors

are close to one another with a maximum value of 1 when
the two vectors coincide. For a given lattice configuration i,
we define its distance from the whole ensemble of other
structures, �i, as the largest overlap of its eigenvector with all
other eigenvectors,

�i = max���Vi
0�V j

0��� , �3�

where j goes from 1 to 103 347, and j� i. Thus, �i is in-
versely related to the density of structures around a given
structure i.

The relationship of �i and the designability for all 103 346
structures is plotted in Fig 3. All structures with designability
greater than 1500 correspond without exception to vectors
with very few neighbors: with � values are smaller than 0.88.
The clear separation between low designability compact
structures and highly designable “proteinlike” structures
shown in Fig. 3 reveals a unique property of the “protein
like” structures: the dominant eigenvectors of their contact
matrices are well separated from those of other random com-
pact structures. This property is a key requirement for the
dominant eigenvector to provide a “structural code,” because
the dominant eigenvector of a randomly chosen contact ma-
trix does not fully determine the contact matrix. Contact ma-
trices from different structures may have indistinguishable
dominant eigenvectors. Only those dominant eigenvectors
well separated from other dominant eigenvectors can provide
a unique and robust mapping to their corresponding contact
matrices. This result is significant because it shows how the
3D structural information of a protein containing many de-
grees of freedom �at least 2N real numbers� can be encoded
with just N amino acids of 20 discrete choices for special
“proteinlike” structures. This codability requirement may
place severe constraints on the number of possible protein
folds that can exist in nature.

In summary, our study shows that a strong correlation
exists between a protein sequence and the dominant eigen-
vector of its structure contact matrix. The dominant eigen-
vector provides an ab initio sequence-independent structural
profile for sequence-structure mapping of proteins. This 1D
profile gives a better explanation of the “designability prin-

FIG. 3. The correlation between designability and the largest
overlap of its eigenvector with all other eigenvectors �i �see Eq. �3��
obtained from 3�3�3 cubic lattice model.
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ciple” found in the HP lattice models, and can be further
extended to real off-lattice protein structures.
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